(Importing a new version from external source)
 
(Importing a new version from external source)
 
Line 1: Line 1:
The FITS standard is a container that describes how to store image data and meta-data. Professional tools, from the early age of the FITS format, like [[ds9]] (Harvard Smithsonian Center for Astrophysics), [https://heasarc.gsfc.nasa.gov/docs/software/ftools/fv/ fv] (FITS viewer from NASA), store images '''bottom-up'''. We might be tempted to say that it does not really matter, but when demosaicing or astrometry is involved, problems arise. For example, the usual RGGB Bayer pattern becomes GBRG if the image is upside-down.
The FITS standard is a container that describes how to store image data and meta-data. Professional tools, from the early age of the FITS format, like [https://sites.google.com/cfa.harvard.edu/saoimageds9 ds9] (Harvard Smithsonian Center for Astrophysics), [https://heasarc.gsfc.nasa.gov/docs/software/ftools/fv/ fv] (FITS viewer from NASA), store images '''bottom-up'''. We might be tempted to say that it does not really matter, but when demosaicing or astrometry is involved, problems arise. For example, the usual RGGB Bayer pattern becomes GBRG if the image is upside-down.

Latest revision as of 21:38, 10 July 2020

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Siril:FITS orientation)
The FITS standard is a container that describes how to store image data and meta-data. Professional tools, from the early age of the FITS format, like [https://sites.google.com/cfa.harvard.edu/saoimageds9 ds9] (Harvard Smithsonian Center for Astrophysics), [https://heasarc.gsfc.nasa.gov/docs/software/ftools/fv/ fv] (FITS viewer from NASA), store images '''bottom-up'''. We might be tempted to say that it does not really matter, but when demosaicing or astrometry is involved, problems arise. For example, the usual RGGB Bayer pattern becomes GBRG if the image is upside-down.

The FITS standard is a container that describes how to store image data and meta-data. Professional tools, from the early age of the FITS format, like ds9 (Harvard Smithsonian Center for Astrophysics), fv (FITS viewer from NASA), store images bottom-up. We might be tempted to say that it does not really matter, but when demosaicing or astrometry is involved, problems arise. For example, the usual RGGB Bayer pattern becomes GBRG if the image is upside-down.