No edit summary |
Updating to match new version of source page |
||
Line 33: | Line 33: | ||
Dans le cas de la séquence NGC7635, nous avons utilisé "Winsorized Sigma Clipping" afin de supprimer les traces des satellites. (<math>\sigma_{low}=4</math> and <math>\sigma_{high}=3</math>). | Dans le cas de la séquence NGC7635, nous avons utilisé "Winsorized Sigma Clipping" afin de supprimer les traces des satellites. (<math>\sigma_{low}=4</math> and <math>\sigma_{high}=3</math>). | ||
[[File:Siril stacking screen.png]] | [[File:Siril stacking screen.png|700px]] | ||
The output console thus gives the following result:<br> | |||
14:33:06: Pixel rejection in channel #0: 0.181% - 1.184% | |||
14:33:06: Pixel rejection in channel #1: 0.151% - 1.176% | |||
14:33:06: Pixel rejection in channel #2: 0.111% - 1.118% | |||
14:33:06: Integration of 12 images: | |||
14:33:06: Pixel combination ......... average | |||
14:33:06: Normalization ............. additive + scaling | |||
14:33:06: Pixel rejection ........... Winsorized sigma clipping | |||
14:33:06: Rejection parameters ...... low=4.000 high=3.000 | |||
14:33:07: Saving FITS: file NGC7635.fit, 3 layer(s), 4290x2856 pixels | |||
14:33:07: Execution time: 9.98 s. | |||
14:33:07: Background noise value (channel: #0): 9.538 (1.455e-04) | |||
14:33:07: Background noise value (channel: #1): 5.839 (8.909e-05) | |||
14:33:07: Background noise value (channel: #2): 5.552 (8.471e-05) | |||
[[File:Siril stacking result.png|700px]] | [[File:Siril stacking result.png|700px]] | ||
After that, the result is saved in the file named below the buttons, and is displayed in the grey and colour windows. You can adjust levels if you want to see it better, or use the differe1nt display mode. In our example the file is the stack result of all files, i.e., 12 files. | |||
[[File:Siril inal_result.png|700px]] | [[File:Siril inal_result.png|700px]] | ||
The images above picture the result in Siril using the Auto-Stretch rendering mode. Note the improvement of the signal-to-noise ratio regarding the result given for one frame in the previous [[Siril:Tutorial_preprocessing|step]] (take a look to the sigma value). The increase in SNR is of <math>21/5.1 = 4.11 \approx \sqrt{12} = 3.46</math> and you should try to improve this result adjusting <math>\sigma_{low}</math> and <math>\sigma_{high}</math>. | |||
[[File:Siril_Comparison_sigma.png|700px]] | [[File:Siril_Comparison_sigma.png|700px]] |
Revision as of 13:06, 5 September 2016
Siril processing tutorial
- Convertir les images en images FITS utilisées par Siril (importer les images)
- Travailler sur une séquence d'images
- Pré-traitement
- Alignement (Global star alignment)
- → Empilement
Empilement
L'étape finale consiste à empiler les images. Pour ce faire, allez dans l'onglet "stacking" et indiquez si vous voulez empiler toutes les images ou seulement les meilleurs images au regard des valeurs FWHM calculées lors de l'alignement. Siril propose plusieurs algorithmes d'empilement.
- Sum Stacking
Il s'agit du plus simple algorithme. Chaque pixel dans la pile est sommé utilisant une précision de 32bits. et le résultat est normalisé sur 16bits. L'augmentation du rapport signal sur bruit (SNR) est proportionnel à [math]\displaystyle{ \sqrt{N} }[/math], où [math]\displaystyle{ N }[/math] est le nombre d'image. A cause de l'absence de normalisation, il est recommandé d'utiliser cette algorithme pour l'empilement des images planétaires.
- Average Stacking With Rejection
- Percentile Clipping : il s'agit d'un algorithme de rejet en une étape idéal pour les petits jeu d'images (jusqu'à 6 images)
- Sigma Clipping : c'est un algorithme qui va rejeter les pixels dont la distance à la médiane sera plus grande que les 2 valeurs donné en unité sigma([math]\displaystyle{ \sigma_{low} }[/math], [math]\displaystyle{ \sigma_{high} }[/math]).
- Median Sigma Clipping : il s'agit du même algorithme que précédemment, excepté que le pixel rejeté est remplacé par la valeur médiane de la pile.
- Winsorized Sigma Clipping : cette algorithme est très similaire à la méthode Sigma Clipping mais il utilise un algorithme basé sur les travaux de Huber [1] [2].
- Linear Fit Clipping : il s'agit d'un algorithme développé par Juan Conejero, principal développeur de PixInsight [2]. Il pratique un ajustement d'une droite ([math]\displaystyle{ y=ax+b }[/math]) de la pile des pixel et rejette les pixels déviants. Cette algorithme marche très bien avec des jeux d'images très important et lorsque le ciel contient des différences de gradient.
Cet algorithme est très efficace pour supprimer les traces de satellites et d'avions.
- Empilement médian
Cette méthode est généralement utilisé pour l'empilement des dark/flat/bias. La valeur médiane de chaque pile de pixel est calculée. Comme cette méthode ne devrait pas être utilisée autrement qu'avec les dark, flat et bias, elle ne prend pas en compte un quelconque déplacement calculé durant l'étape d'alignement. L'amélioration du rapport signal/bruit est proportionnel à [math]\displaystyle{ 0.8\sqrt{N} }[/math].
- Pixel Maximum Stacking
Cet algorithme est principalement utilisée pour construire des filés d'étoiles. Les pixels de l'image sont remplacés par des pixels aux memes coordonnées si l'intensité est plus grande.
- Pixel Minimum Stacking
Cet algorithme est principalement utilisé pour recadrer les images et enlever les bandes noires. Les pixels de l'image sont remplacés par des pixels aux memes coordonnées si l'intensité est plus petite.
Dans le cas de la séquence NGC7635, nous avons utilisé "Winsorized Sigma Clipping" afin de supprimer les traces des satellites. ([math]\displaystyle{ \sigma_{low}=4 }[/math] and [math]\displaystyle{ \sigma_{high}=3 }[/math]).
The output console thus gives the following result:
14:33:06: Pixel rejection in channel #0: 0.181% - 1.184% 14:33:06: Pixel rejection in channel #1: 0.151% - 1.176% 14:33:06: Pixel rejection in channel #2: 0.111% - 1.118% 14:33:06: Integration of 12 images: 14:33:06: Pixel combination ......... average 14:33:06: Normalization ............. additive + scaling 14:33:06: Pixel rejection ........... Winsorized sigma clipping 14:33:06: Rejection parameters ...... low=4.000 high=3.000 14:33:07: Saving FITS: file NGC7635.fit, 3 layer(s), 4290x2856 pixels 14:33:07: Execution time: 9.98 s. 14:33:07: Background noise value (channel: #0): 9.538 (1.455e-04) 14:33:07: Background noise value (channel: #1): 5.839 (8.909e-05) 14:33:07: Background noise value (channel: #2): 5.552 (8.471e-05)
After that, the result is saved in the file named below the buttons, and is displayed in the grey and colour windows. You can adjust levels if you want to see it better, or use the differe1nt display mode. In our example the file is the stack result of all files, i.e., 12 files.
The images above picture the result in Siril using the Auto-Stretch rendering mode. Note the improvement of the signal-to-noise ratio regarding the result given for one frame in the previous step (take a look to the sigma value). The increase in SNR is of [math]\displaystyle{ 21/5.1 = 4.11 \approx \sqrt{12} = 3.46 }[/math] and you should try to improve this result adjusting [math]\displaystyle{ \sigma_{low} }[/math] and [math]\displaystyle{ \sigma_{high} }[/math].
Maintenant doit commencer l'étape du traitement de votre image avec un recadrage, une correction de gradient et plusieurs autres étape de traitement disponible dans Siril. Pour voir les différents traitement disponibles dans Siril, rendez-vous à cette page page. Vous avez ci-dessous un exemple de ce que vous pouvez obtenir avec Siril :
Fin du tutoriel sur le pré-traitement. Retourner sur la page principale pour d'autres tutoriaux illustrés.