(Created page with "La sortie de la console donne le résultat suivant :<br /> <code> 22:26:06: Pixel rejection in channel #0: 0.215% - 1.401%<br /> 22:26:06: Pixel rejection in channel #1: 0.1...")
(Created page with "Après ceci, le résultat est enregistré dans un fichier nommé en fonction de ce que vous aurez décidé et affiché à l'écran. Vous pouvez ajuster les niveaux si vous dé...")
Line 52: Line 52:
 
[[File:Siril stacking result.png|700px]]
 
[[File:Siril stacking result.png|700px]]
  
After that, the result is saved in the file named below the buttons, and is displayed in the grey and colour windows. You can adjust levels if you want to see it better, or use the differe1nt display mode. In our example the file is the stack result of all files, i.e., 12 files.
+
Après ceci, le résultat est enregistré dans un fichier nommé en fonction de ce que vous aurez décidé et affiché à l'écran. Vous pouvez ajuster les niveaux si vous désirez avoir une meilleure visualisation, ou bien utiliser un autre mode d'affichage. Dans notre exemple, le fichier est le résultat d'une empilement de 12 images.
  
 
[[File:Siril inal_result.png|700px]]
 
[[File:Siril inal_result.png|700px]]

Revision as of 14:49, 11 April 2016

Other languages:
English • ‎español • ‎français

Siril processing tutorial

Empilement

L'étape finale consiste à empiler les images. Pour ce faire, allez dans l'onglet "stacking" et indiquez si vous voulez empiler toutes les images ou seulement les meilleurs images au regard des valeurs FWHM calculées lors de l'alignement. Siril propose plusieurs algorithmes d'empilement.

  • Sum Stacking

Il s'agit du plus simple algorithme. Chaque pixel dans la pile est sommé utilisant une précision de 32bits. et le résultat est normalisé sur 16bits. L'augmentation du rapport signal sur bruit (SNR) est proportionnel à [math]\sqrt{N}[/math], où [math]N[/math] est le nombre d'image. A cause de l'absence de normalisation, il est recommandé d'utiliser cette algorithme pour l'empilement des images planétaires.

  • Average Stacking With Rejection
    • Percentile Clipping : il s'agit d'un algorithme de rejet en une étape idéal pour les petits jeu d'images (jusqu'à 6 images)
    • Sigma Clipping : c'est un algorithme qui va rejeter les pixels dont la distance à la médiane sera plus grande que les 2 valeurs donné en unité sigma([math]\sigma_{low}[/math], [math]\sigma_{high}[/math]).
    • Median Sigma Clipping : il s'agit du même algorithme que précédemment, excepté que le pixel rejeté est remplacé par la valeur médiane de la pile.
    • Winsorized Sigma Clipping : cette algorithme est très similaire à la méthode Sigma Clipping mais il utilise un algorithme basé sur les travaux de Huber [1] [2].
    • Linear Fit Clipping : il s'agit d'un algorithme développé par Juan Conejero, principal développeur de PixInsight [2]. Il pratique un ajustement d'une droite ([math]y=ax+b[/math]) de la pile des pixel et rejette les pixels déviants. Cette algorithme marche très bien avec des jeux d'images très important et lorsque le ciel contient des différences de gradient.

Cet algorithme est très efficace pour supprimer les traces de satellites et d'avions.

  • Empilement médian

Cette méthode est généralement utilisé pour l'empilement des dark/flat/bias. La valeur médiane de chaque pile de pixel est calculée. Comme cette méthode ne devrait pas être utilisée autrement qu'avec les dark, flat et bias, elle ne prend pas en compte un quelconque déplacement calculé durant l'étape d'alignement. L'amélioration du rapport signal/bruit est proportionnel à [math]0.8\sqrt{N}[/math].

  • Pixel Maximum Stacking

Cet algorithme est principalement utilisée pour construire des filés d'étoiles. Les pixels de l'image sont remplacés par des pixels aux memes coordonnées si l'intensité est plus grande.

  • Pixel Minimum Stacking

Cet algorithme est principalement utilisé pour recadrer les images et enlever les bandes noires. Les pixels de l'image sont remplacés par des pixels aux memes coordonnées si l'intensité est plus petite.

Dans le cas de la séquence NGC7635, nous avons utilisé "Winsorized Sigma Clipping" afin de supprimer les traces des satellites. ([math]\sigma_{low}=4[/math] and [math]\sigma_{high}=3[/math]).

Siril stacking screen.png

La sortie de la console donne le résultat suivant :
22:26:06: Pixel rejection in channel #0: 0.215% - 1.401%
22:26:06: Pixel rejection in channel #1: 0.185% - 1.273%
22:26:06: Pixel rejection in channel #2: 0.133% - 1.150%
22:26:06: Integration of 12 images:
22:26:06: Normalization ............. additive + scaling
22:26:06: Pixel rejection ........... Winsorized sigma clipping
22:26:06: Rejection parameters ...... low=4.000 high=3.000
22:26:09: Saving FITS: file NGC7635.fit, 3 layer(s), 4290x2856 pixels
22:26:19: Background noise value (channel: #0): 10.013 (1.528e-04)
22:26:19: Background noise value (channel: #1): 6.755 (1.031e-04)
22:26:19: Background noise value (channel: #2): 6.621 (1.010e-04)

Siril stacking result.png

Après ceci, le résultat est enregistré dans un fichier nommé en fonction de ce que vous aurez décidé et affiché à l'écran. Vous pouvez ajuster les niveaux si vous désirez avoir une meilleure visualisation, ou bien utiliser un autre mode d'affichage. Dans notre exemple, le fichier est le résultat d'une empilement de 12 images.

Siril inal result.png

The images above picture the result in Siril using the Auto-Stretch rendering mode. Note the improvement of the signal-to-noise ratio regarding the result given for one frame in the previous step (take a look to the sigma value). The increase in SNR is of [math]19.7/6.4 = 3.08 \approx \sqrt{12} = 3.46[/math] and you should try to improve this result adjusting [math]\sigma_{low}[/math] and [math]\sigma_{high}[/math].

Siril Comparison sigma.png

Now should start the process of the image with crop, background extraction (to remove gradient), and some other processes to enhance your image. To see processes available in Siril please visit this page. Here an example of what you can get with Siril: Siril M8-M20 processed.png

  1. Peter J. Huber and E. Ronchetti (2009), Robust Statistics, 2nd Ed., Wiley
  2. 2.0 2.1 Juan Conejero, ImageIntegration, Pixinsight Tutorial

End of the processing tutorial. Return to the main documentation page for more illustrated tutorials.